Table 1: Cognitive Frameworks in Human-Computer Interaction (HCI) | Framework | Key Concept | Design Implications | |------------------------------------|--|--| | Mental Models | Users' internal understand-
ing of how a system works,
shaped by prior experiences. | Use familiar design patterns; provide clear feedback to align with user expectations. | | Distributed Cognition | Cognitive processes extend to tools, artifacts, and others in the environment. | Design interfaces as cognitive aids; support collaborative tasks with seamless information flow. | | Gulfs of Execution and Evaluation | Gaps between user intentions
and actions (execution) and
interpreting system output
(evaluation). | Intuitive controls to minimize execution gulf; clear feedback for evaluation gulf. | | Information Process-
ing Model | Human cognition as perception, processing, and action, with limits like working memory. | Capture attention with salient cues; enable recognition over recall; provide memory aids. | | Schema Theory | Cognitive structures organizing knowledge to guide perception and behavior. | Use familiar elements to tap into schemas; consider cultural/individual differences. | | Cognitive Load Theory | Manages intrinsic, extraneous, and germane cognitive load during tasks. | Simplify interfaces to reduce extra-
neous load; optimize learning-related
load. | | Activity Theory | Interaction as a so-
cially/culturally situated
activity involving users and
tools. | Design for social practices; consider cultural norms in interface design. | | Intuitive Interaction
Framework | Interfaces feel intuitive by leveraging prior experience and natural cognition. | Use familiar controls; balance intuitive and analytical interactions based on task. |